:py:mod:`uavfpy.planner.surface` ================================ .. py:module:: uavfpy.planner.surface .. autoapi-nested-parse:: .. !! processed by numpydoc !! Module Contents --------------- Functions ~~~~~~~~~ .. autoapisummary:: uavfpy.planner.surface.generate_xy_grid uavfpy.planner.surface.generate_random_obstacles uavfpy.planner.surface.place_obstacles uavfpy.planner.surface.get_optimal_grid .. py:function:: generate_xy_grid(xrange, yrange, step) Generate an x y grid over `xrange` `yrange` with grid-size `step`. :Parameters: **xrange** : tuple of float x_lower, x_upper **yrange** : tuple of float x_lower, x_upper **step** : float step size of the grid. :Returns: tuple of np.ndarray outputs are given as a tuple of (X, Y) grids, each corresponding to the X and Y values. The index of the grid corresponds to the relationship between points in the grid. .. !! processed by numpydoc !! .. py:function:: generate_random_obstacles(n, xrange: Tuple[float, float], yrange: Tuple[float, float], radrange: Tuple[float, float], height_range: Tuple[float, float]) -> dict Generate list of `n` random obstacles within the x, y space. :Parameters: **n** : int no of obstacles to generate **xrange** : tuple of float upper and lower x coordinates of the obstacles **yrange** : tuple of float upper and lower y coordinates of the obstacles **radrange** : tuple of float upper and lower range of obstacle radius **height_range** : tuple of float upper and lower range of obstacle height :Returns: list of dict dict with keys "x", "y", "r", "h" .. !! processed by numpydoc !! .. py:function:: place_obstacles(X, Y, obstacles) Make a new grid, with the same dimensions as `X`, `Y`, containing the obstacles contained in `obstacles.` The obstacles will overlap each other by the order they are given in the list. So if an O1 overlaps O2, but has a height less than O2, the portion that overlaps will be overwritten with O1's height. :Parameters: **X** : np.ndarray MxN array of x values. **Y** : np.ndarray MxN array of y values. **obstacles** : list of dict eahc obstacle is dict with fields "x", "y", "r", "h" :Returns: np.ndarray MxN array of H values corresponding to the "ground" as if obstacles have been placed there. .. !! processed by numpydoc !! .. py:function:: get_optimal_grid(X, Y, H, buffer, max_dh, max_d2h, min_h, step: Tuple[float, float], waypoints=None, waypointcost=100000.0, verbose=True, solver='ECOS') Get an optimal height grid corresponding to a surface above the ground from an obstacle height grid `H`. The height grid has a minimum dh/dx, d2h/d2x, min h, and buffer between tall obstacles and the surface. The input grid `H` is structured like an MxN array of h values. The x, y positions are given by separate `X` and `Y` grids. :Parameters: **H** : np.ndarray height grid **buffer** : float minimum distance to obstacle or ground **max_dh** : float maximum dh/dx that the vehicle can climb. Corresponds to the "slope" of the sheet, or the max climb angle of the vehicle **max_d2h** : float maximum d2h/dx2 that the vehicle can accelerate to climb. smaller values correspond to a "smoother" sheet. **min_h** : float minimum altitude of the sheet `h`, irrespective of obstacles **step** : step grid step **verbose** : bool, optional whether to print verbose solver information, by default True **solver** : str, optional the solver to use. The solver must be accessible to `cvxpy`, by default "ECOS" :Returns: np.ndarray an array with the same dimensions as `H`, corresponding to the sheet above `H`. .. !! processed by numpydoc !!