:py:mod:`uavfpy.planner.coverage.polygon` ========================================= .. py:module:: uavfpy.planner.coverage.polygon .. autoapi-nested-parse:: .. !! processed by numpydoc !! Module Contents --------------- Classes ~~~~~~~ .. autoapisummary:: uavfpy.planner.coverage.polygon.RandomPolygon Functions ~~~~~~~~~ .. autoapisummary:: uavfpy.planner.coverage.polygon.beta_clusters uavfpy.planner.coverage.polygon.remove_close_points uavfpy.planner.coverage.polygon.stupid_spiky_polygon .. py:function:: beta_clusters(clusters: int = 3, ppc: int = 20, alpha: float = 4.0, beta: float = 4.0) -> numpy.ndarray .. !! processed by numpydoc !! .. py:function:: remove_close_points(points: numpy.ndarray, eps: float = 0.07) -> numpy.ndarray .. !! processed by numpydoc !! .. py:class:: RandomPolygon(n, points=None, holes=2) Bases: :py:obj:`object` .. !! processed by numpydoc !! .. py:method:: removable_interiors(self, dt: scipy.spatial.Delaunay) -> tuple find indices of interior simplices that are safe to remove in dt .. !! processed by numpydoc !! .. py:method:: removable_exteriors(self, dt: scipy.spatial.Delaunay, points: numpy.ndarray, ax: matplotlib.pyplot.Axes = None) -> tuple find indices to safe .. !! processed by numpydoc !! .. py:method:: del_tri(self, dt: scipy.spatial.Delaunay, rm: int) -> scipy.spatial.Delaunay Alters dt in place to remove tri at `rm` .. !! processed by numpydoc !! .. py:method:: _dotself(self, x: numpy.ndarray) -> numpy.ndarray .. !! processed by numpydoc !! .. py:method:: ar(self, M: numpy.ndarray) -> numpy.float64 aspect ratio .. !! processed by numpydoc !! .. py:method:: polygon(self, points: numpy.ndarray, holes: int = 0, removals: int = 30) -> nx.DiGraph() Create a non-convex polygon from points. This algorithm works by first creating a convex Delaunay triangulation over the points, and then removing triangles to form a non-convex polygon. Thus, the general shape of the initial point distribution will infrom the subsequent non-convex polygon. This algorithm is slow for large numbers of points. :Parameters: **points** : np.ndarray, holes, optional The number of interior holes in the polygon, default 0 :Returns: nx.Digraph Graph containing the polygon. .. !! processed by numpydoc !! .. py:method:: addcw(self, H: networkx.DiGraph, e1: int, e2: int) -> float determine which way the edge is pointing e.g. Q2 │ Q1 ─────┼───── Q3 │ Q4 A "positive" cw value goes from Q2 to Q4. A "negative" cw value means the edge goes from Q4 to Q2. It's relative so we only look at directions not absolute positions. .. !! processed by numpydoc !! .. py:method:: plot(self, G: networkx.DiGraph, ax: matplotlib.pyplot.Axes, posattr: str = 'points', arrows: bool = False, nodecolor: str = 'k', ecolor: str = None, ecolorattr: str = 'weight', ecmap='tab10', node_text: bool = True, style: str = '-', m: str = '.', draw_nodes=True) -> matplotlib.pyplot.Axes Draw a DiGraph `G` with points stored in `posattr` onto `ax` .. !! processed by numpydoc !! .. py:function:: stupid_spiky_polygon(R_inner: int, R_outer: int, n=10) .. !! processed by numpydoc !!